Social Media Information Extraction

multi-task, multi-lingual, & multi-contextual

Shubhanshu Mishra Sr. Machine Learning Researcher Content Understanding Research, Twitter

https://shubhanshu.com

https://socialmediaie.github.io/

Slides at: https://shubhanshu.com/talks

* Most work presented here was done during my PhD at UIUC with multiple collaborators.

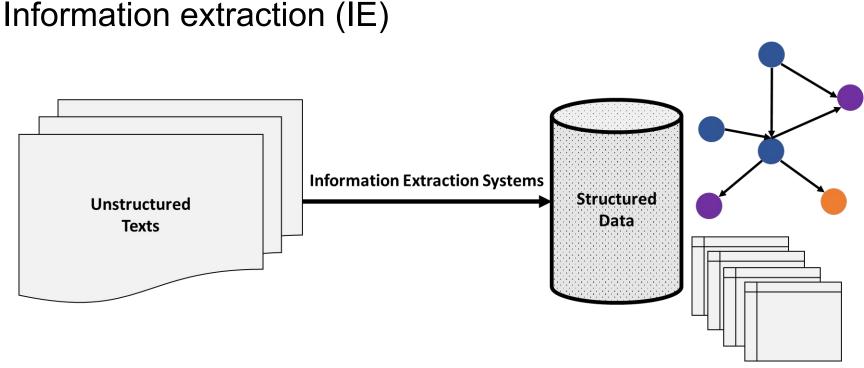
Work done at twitter will be marked with **y** Twitter logo.

Content and views expressed in this talk are solely the responsibility of the presenter.

Outline

- Definitions:
 - Information Extraction (IE)
 - Social Media
 - Digital Social Trace Data DSTD
- Challenge of Social Media IE
- Tasks
 - Text Classification: Topics, Sentiment, Spam
 - Token Level Classification: NER + Linking, Phrases, Command Word Extractions
 - Document Similarity and Ranking: Search, Recommendations
- Applications
- Datasets
- Challenges
 - Less data to learn: Solution Multi-task learning to improving efficiency
 - Less languages to learn: Solution Multilingual learning to improve coverage y
 - Less context to learn: Solution LMSOC, NTULM y
- Notes on bias of ML systems
 - NER Bias 🔰
- Conclusion

Definitions



"Information Extraction refers to the automatic extraction of structured information such as entities, relationships between entities, and attributes describing entities from unstructured sources."

– (Sarawagi, 2008)

Types of Text based Media

Chapter 1

It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.

However little known the feelings or views of such a man may be on his first entering a neighbourhood, this truth is so well fixed in the minds of the surrounding families, that he is considered as the rightful property of some one or other of their daughters.

"My dear Mr. Bennet," said his lady to him one day, "have you heard that Netherfield Park is let at last?"

Mr. Bennet replied that he had not.

"But it is," returned she; "for Mrs. Long has just been here, and she told me all about it."

Mr. Bennet made no answer.

India vs West Indies | In 1000th ODI, facile win for India against Windies

Amol Karhadkar

AHMEDABAD FEBRUARY 10, 2022 07:15 IST UPDATED: FEBRUARY 10, 2022 07:15 IST

Chahal, Washington and skipper Rohit ensure a victory in historic 1000th ODI for India

Washington Sundar returned to international cricket in style, Yuzvendra Chahal proved his worth with his wristspin and Rohit Sharma marked his first hit as full-time ODI with a quickfire fifty to ensure a perfect outing during India's 1000th ODI on Sunday.

Once Washington and Chahal broke the backbone of West Indies middle order on a helpful Narendra Modi Stadium strip, despite Jason Holder playing a trademark innings in the latter half, West Indies could manage only 176 before being bowled out in the 44th over.

2022 - The Hindu

ver Setting	ls Window	Help
a.org/show_	bug.cgi?id	=1749908 Help out testing the AUR https://lists.archlinux.org/pipermail/a
		again.
[11:11:13]	Namarrgon	sanchex: are you running iwd and nm at the same time?
[11:12:14]	sanchex	I am running nm, I don't know if iwd is also running
[11:12:35]	Namarrgon	did you configure nm to use iwd as the backend instead of wpa_supplicant?
[11:13:07]	sanchex	No
[11:13:11]	Namarrgon	then why is iwd running?
[11:13:36]	*	julia (~quassel@user/julia) has joined
[11:15:58]	*	DeepDayze has quit (Quit: Leaving)
[11:17:02]	sanchex	good question
11:17:45]	Namarrgon	how did you install arch?
[11:18:08]	Namarrgon	you're the third one with this issue today
[11:18:23]	*	gehidore is curious too
[11:18:54]	*	cabo40 (~cabo40@189.217.81.59) has joined
[11+10+26]	canchay	Heing the Auch installow this was months ago the

2021 - Internet Relay Chat - Wikipedia

- Work on farm Fri. Burning piles of brush WindyFire got out of control. Thank God for good naber He help get undr control Pants-BurnLegWound.
- Boom! Ya ur website suxx bro
- ...dats why pluto is pluto it can neva b a star
- michelle obama great. job. and. whit all my. respect she. look. great. congrats. to. her.

2013 - Social Media, Eisenstein NAACL-HLT

http client info

@aero.iitkgp.ernet.in Tue, 21 Mar 1995 01:33:55 -0500

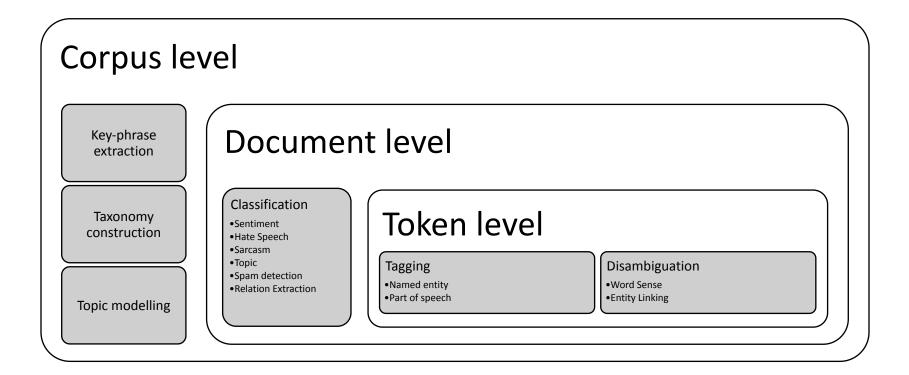
- Messages sorted by: [date][thread][subject][author]
- Next message: cyn@prism.nmt.edu: "Need help!"
- Previous message: jremick@u.washington.edu: "Where I am in here"

I have a running version of lynx here. I am unable to retrieve html documents. should I have a http daemon running on my machine? Could you direct me to some FAQ on http programs and daemons Thanks.

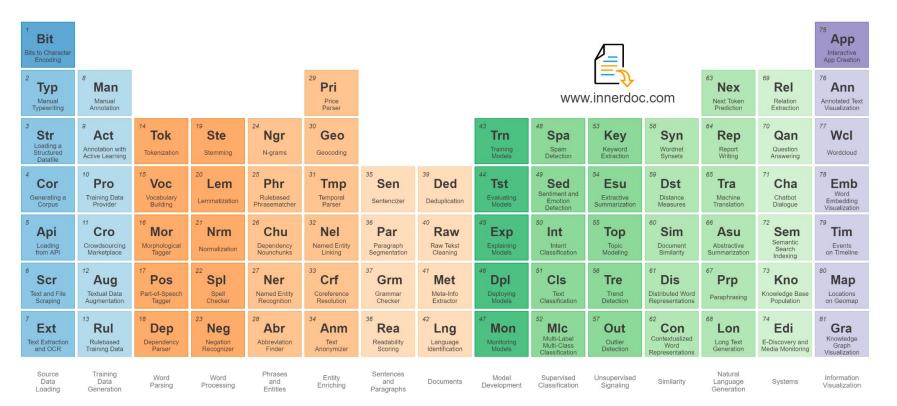
Next message: "Need help!"
 Previous message: "Where
 am in here"

1995 - <u>Usenet</u>

Information extraction tasks



Periodic Table of Natural Language Processing Tasks



Text classification https://github.com/socialmediaie/SocialMedialE

Input

I know this tweet is late but I just want to say I absolutely fucking hated this season of @GameOfThrones

what a waste of time.

Predict

Output abusive

founta			
abusive	hateful 0.084	normal 0.085	spam 0.002
waseem			
none 0.970	racism 0.002	sexism 0.027	

clarin		
negative 0.956	neutral 0.036	positive 0.008
other		
negative 0.906	neutral 0.063	positive 0.031
politics		
negative 0.917	neutral 0.048	positive 0.035
semeval		
negative 0.966	neutral 0.030	positive 0.004

sentiment

uncertainity

sarcasm				
not sarcasm	0.914 sa	rcasm 0.086		
veridicality				
definitely no 0.033	definitely yes 0.244	probably no 0.112	probably yes 0.189	uncertain 0.422

Sequence tagging https://github.com/socialmediaie/SocialMedialE

Input

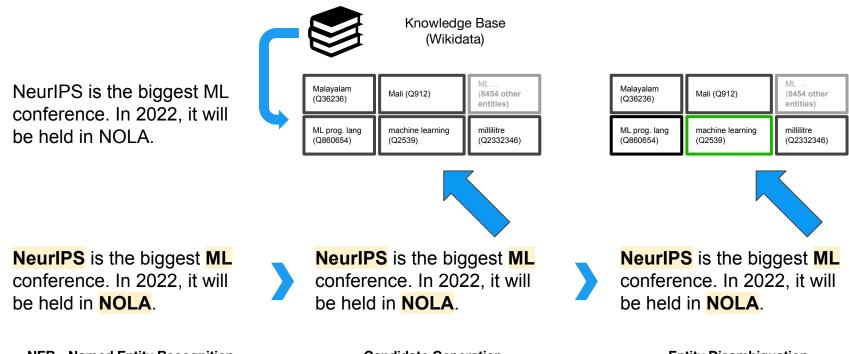
john <u>oliver</u>	coined the term	donal drumph	as a joke on his show	#LastWeekTonight	

Predict

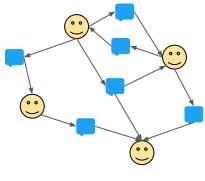
Output

tokens j	<u>ohn</u>	<u>oliver</u>	<u>coined</u>	<u>the</u>	<u>term</u>	<u>donal</u>	<u>drumph</u>	<u>nas</u>	<u>a</u>	joke	<u>on</u>	<u>his</u>	<u>show</u>	<u>#LastWeekTonight</u>
ud_pos	PROPN	PROPN	VERB	DET	NOUN	PROPN	PROPN	ADP	DET	NOUN	AD	PROM	NOUN	Х
ark_pos	^	^	V	D	N	^	^	Ρ	D	N	Ρ	D	N	#
ptb_pos	NNP	NNP	VBD	DT	NN	NNP	NNP	IN	DT	NN	IN	PRP\$	NN	HT
multime	dal_ner PER					PER								
broad_n	er PER													
wnut17_	ner PERSON													
ritter_ne	PERSON													
yodie_ne	er PERSON													
ritter_ch	unk NP		VP	NP		NP		PP	NP		PP	NP		
ritter_cc	g NOUN.PERSON		VERB.COMMUNICATION		NOUN.COMMUNICATION					NOUN.COMMUNICATION			NOUN.COMMUNICATION	L L

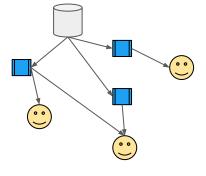
Named Entity Recognition and Disambiguation (NERD)



Social Media



Social Media



Traditional Media

"Many social media outlets differ from traditional media (e.g., print magazines and newspapers, TV, and radio broadcasting) in many ways, including quality, reach, frequency, usability, relevancy, and permanence. Additionally, social media outlets operate in a dialogic transmission system, i.e., many sources to many receivers, while traditional media outlets operate under a monologic transmission model (i.e., one source to many receivers)."

"For instance, a newspaper is delivered to many subscribers and a radio station broadcasts the same programs to an entire city."

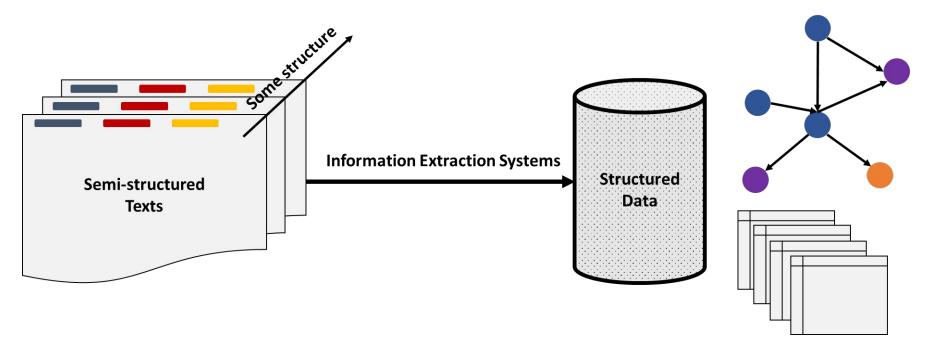
[®]User-generated

content—such as **text posts or comments**, digital photos or videos, and data generated through all online interactions is the lifeblood of social media."

"Social media **helps the development of online social networks** by connecting a user's profile with those of other individuals or groups."

Source: Social media - Wikipedia

Information extraction from semi-structured data



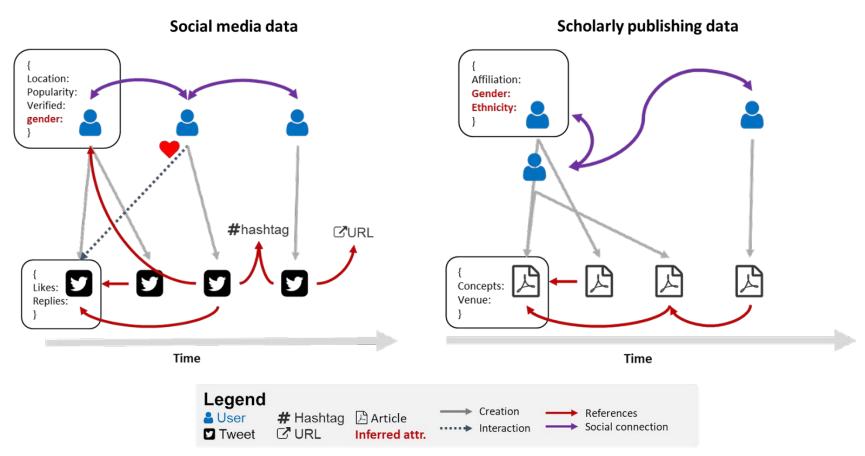
However, not all data is unstructured. Many datasets of interest have some inherent structure imposed because of the data generating process.

Digital Social Trace Data https://shubhanshu.com/phd_thesis/

Digital Social Trace Data (DSTD) are digital activity traces generated by individuals as part of a social interactions, such as interactions on social media websites like Twitter, Facebook; or in scientific publications.

Inspired from Digital Trace Data (Howison et. al, 2011)

Digital Social Trace Data (DSTD)



DSTD properties and examples

Property	Social Media	Scholarly data
Temporal information associated with each item of the data	Tweets ordered by time	Scholarly papers ordered by time
Presence of connection between various data items	User authors tweets, tweet are quoted in other tweets	Authors connected to papers, papers cite other papers
Optionally associated meta-data for data items	Likes, retweets, followers, location	Venue, topics, key words

Challenge of Social Media IE

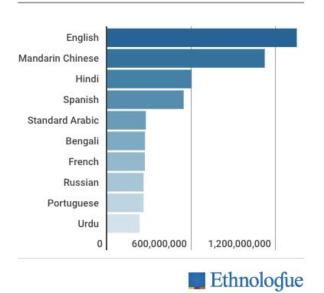
Why social media data is challenging?

Social Media text often has a inherent structure, which provides context, e.g.

- user mentions
- hashtags
- comment threads
- less formally written language
- lot of unseen words
- typos, etc.

Language Diversity

Top 10 most spoken languages, 2021



Source: https://www.ethnologue.com/guides/ethnologue200

	Languages	Regions		Pa	ticipation		Ac	tive edi	tors		Edits	Usage	Content
	Language ⇒ Wikipedia article		Speakers in millions (log scale) (?) Editors per million speakers (5+ edits)	Prim.+Sec. Speakers M=millions k=thousands	Editors (5+) per million speakers	p/month	100+ edits p/month (3m avg)		Bots	Bot edits	Human edits by unreg. users	Views per hour	Article count
\$	\$	\$		\$	\$	\$ \$	\$	÷	\$	\$	\$	\$	•
Σ	All languages	AF AS EU NA SA OC CL W											
en	English	AF AS EU NA OC		1121 M	27	30684	3445	1274	312	9%	31%	4,858,539	5,779,516
ceb	Cebuano	AS		20 M	1	26	2	4	60	99%	19%	1,311	5,379,752
SV	Swedish	EU		10 M	64	641	101	66	40	57%	20%	53,206	3,761,531
de	German	EU		132 M	41	5395	900	198	374	10%	20%	726,852	2,254,737
fr	French	AF AS EU NA OC SA		285 M	17	4864	790	161	107	19%	21%	461,591	2,069,464
ni	Dutch	EU SA		28 M	42	1185	214	45	269	38%	19%	97,322	1,953,504
ru	Russian	AS EU		264 M	12	3188	518	87	84	17%	25%	634,782	1,518,909
es	Spanish	AF AS EU NA SA		513 M	8	4135	544	71	36	17%	37%	417,439	1,496,759
it	Italian	EU		68 M	35	2355	398	109	173	29%	32%	270,709	1,489,914
pl	Polish	EU		43 M	29	1256	237	106	68	34%	19%	185,774	1,313,943

Source: https://stats.wikimedia.org/EN/Sitemap.htm#comparisons

Named Entity Recognition (NER) on Tweets

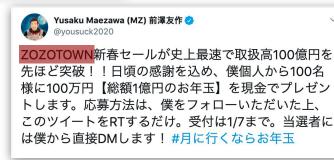
 \checkmark

Official ACM @TheOfficialACM

Yoshua Bengio, Geoffrey Hinton and Yann LeCun, the fathers of #DeepLearning, receive the 2018 #ACMTuringAward for conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing today. bit.ly/2HVJtdV

Real Madrid C.F. 🕑 🤡 @realmadrid · Sep 5 V Los jugadores del Real Madrid y del Castilla han guardado un minuto de silencio por el fallecimiento de Blanca Fernández Ochoa, medallista olímpica y leyenda del deporte español.

V



Example of Named Entity Recognition on tweets

Here we go - Arsenal v Tottenham at Meadow Park!

7:00 AM · Aug 25, 2019 · Twitter for iPhone

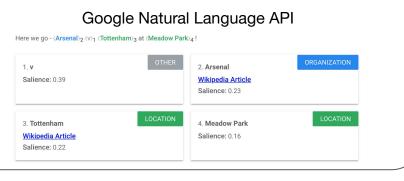
Twitter Specific Model

Here we go - Arsenal Organization 0.966 v Tottenham Organization 0.954 at Meadow Park Place 0.929 !

SpaCy (Open-source)

Here we go - Arsenal vs Tottenham PERSON

at Meadow Park!



NER performance difference

	Per-entity F1		Overall				
System	Location	Misc	Org	Person	P	R	F1
ANNIE	40.23	0.00	16.00	24.81	36.14	16.29	22.46
DBpedia Spotlight	46.06	6.99	19.44	48.55	34.70	28.35	31.20
Lupedia	41.07	13.91	18.92	25.00	38.85	18.62	25.17
NERD-ML	61.94	23.73	32.73	71.28	52.31	50.69	51.49
Stanford	60.49	25.24	28.57	63.22	59.00	32.00	41.00
Stanford-Twitter	60.87	25.00	26.97	64.00	54.39	44.83	49.15
TextRazor	36.99	12.50	19.33	70.07	36.33	38.84	37.54
Zemanta	44.04	12.05	10.00	35.77	34.94	20.07	25.49

Named entity recognition performance over the evaluation partition of the Ritter dataset (best score in bold).

Source: Derczynski, L., Maynard, D., Rizzo, G., van Erp, M., Gorrell, G., Troncy, R., Petrak, J., & Bontcheva, K. (2015). Analysis of named entity recognition and linking for tweets. Information Processing & Management, 51(2), 32–49. <u>https://doi.org/10.1016/j.ipm.2014.10.006</u>

Applications

Applications of information extraction

Index documents by entities

DocID	Entity	Entity type	WikiURL
1	Roger Federer	Person	URL1
2	Facebook	Organization	URL2
¹⁰ 3	Katy Perry	Music Artist	URL3

Application of NER: Trends

V

۲

Sonic The Hedgeblog @Sonic_Hedgeblog

The Dreamcast was launched 20 years ago today, and the US release of 'Sonic Adventure'! Special DLC was available to celebrate the launch of the system. Touching some of them brings up this message. ift.tt/2PXJoMA

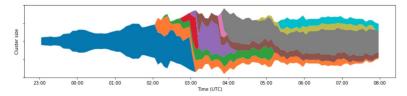
Happy 20th North American birthday to the Dreamcast, which first hit NA on this day in 1999 - the famed 9/9/99. The machine launched with games including Sonic Adventure, Power Stone, House of the Dead 2 and Ready 2 Rumble Boxing.

2 · Trending

Dreamcast

46.8K people are Tweeting about this

Application of NER: Events Detection



Title	Top entities
General conversation	The 76th Annual Golden Globe Awards 2019, #goldenglobes, Lady Gaga, Sandra Oh, Spider-Man: Into the Spider-Verse, Gaga
Hosts' opening speech	Andy Samberg, Black Panther, Sandra Oh, #blackpanther, Jim Carrey, Michael B. Jordan
Green Book	Green Book, Mahershala Ali, Regina King, #greenbook
Christian Bale receives the best actor in comedy or musical award for "Vice"	The 76th Annual Golden Globe Awards 2019, #goldenglobes, Christian Bale, Sandra Oh, Lady Gaga, Darren Criss, Vice
General conversation	The 76th Annual Golden Globe Awards 2019, #goldenglobes, Lady Gaga, Jeff Bridges, Darren Criss
Christian Bale thanks Satan in his acceptance speech	Christian Bale, The 76th Annual Golden Globe Awards 2019, Vice, Mitch McConnell, Satan
General conversation	The 76th Annual Golden Globe Awards 2019, #goldenglobes, Sandra Oh, Alfonso Cuarón, Rami Malek, Roma, Olivia Colman
Rami Malek receives the best actor in a drama	The 76th Annual Golden Globe Awards 2019, #goldenglobes, Rami Malek,
award for "Bohemian Rhapsody"	Bohemian Rhapsody, Lady Gaga, Sandra Oh
Glenn Close receives the best actress in drama award for "The Wife"	Glenn Close, Taylor Swift, Lady Gaga, best actress, Glenn, Bradley Cooper
Green Book	Green Book, Mahershala Ali, Regina King, #greenbook

Application of NER: User Interest

Shubhanshu Mishra @TheShubhanshu NLP Researcher All tweets under CC - By NC SA. Developed: SocialMedialE, ReadLater $\widehat{\Box}$ Education $\widehat{\odot}$ New York, US $\widehat{\diamond}$ shubhanshu.com $\widehat{\blacksquare}$ Joined October 2008

2,277 Following 1,251 Followers

Last Engagements

Twitter (9), India (9), US (7), Pilani (7), NASA (3),

Linkedin (3), Stanford CoreNLP (2)

Datasets

Where is the data?

- MetaCorpus: A list of curated annotated datasets for various social media tasks and social media platforms. <u>https://github.com/socialmediaie/MetaCorpus</u>
- MetaCorpus benchmark: A selected set of datasets which can be used for benchmarking multi-task learning or NLP for social media data

Text classification							
Sentiment	Datasets described in [32]						
Abusive Founta [19], WaseemSRW [44]							
Uncertainity	Uncertainity Sarcasm: Riloff [36]; Veridicality: Swamy [42]						
Sequence Tagging							
PoS tagging	ark: Owoputi [33, 34]; ptb: TwitIE [15] and Ritter [37]; ud: Tweetbankv2 [27], DiMSUM2016 [39], Foster [22], and lowlands [22, 23]						
NER	Ritter [37],; WNUT 2016 [41], WNUT 2017 [14] Finin [18], Hege [20], Broad [12], MultiModal dataset [46], YODIE [21], MSM2013 [7], and NEEL2016 [38]						
Chunking	Ritter [37]						
Supersense tagging	Ritter [37] and Johansen2014 [25]						

Table 1: List of datasets used in our multi-dataset-multi-task learning models.

Named entity recognition

									data	split	labels	sequences	vocab	tokens
	- .									train	13	396	2554	7905
	Tagging	v data	D		•				YODIE	test	13	397	2578	8032
	1,00 L		Part of spe	ecn	aggir	ng				train	<mark>1</mark> 0	1900	<mark>7</mark> 695	36936
			data	split	labels	sequences	vocab	tokens		dev	<mark>1</mark> 0	240	1731	4612
				train	25	1547	<mark>657</mark> 2		Ritter	test	<mark>1</mark> 0	254	1776	4921
				dev	23	327	2036	4823		train		2394	9068	46469
Supe	er sense tagging		Owoputi	test	23	500	2754	7152		test	10	3850		<mark>6</mark> 1908
-			<u>enopad</u>	dev	43	269	1229	2998	WNUT2016		10	1000	5563	16261
data		ences vocab tokens	TwitlE	test	45	632	3539	12196		train			128 <mark>40</mark>	
	train 40	551 3174 10652		train	45	632	3539	12196		dev	6	1009	3538	15733
Ritter	dev 37 test 40	118 1014 2242 118 1011 2291		dev	38	71	695	1362	WNUT2017		6		5759	23394
	sen2014 test 37	200 1249 3064	Ritter	test	42	84	735	1627		train	7		9731	
Jonann		200 1245 5004	Kitter	dev	17	710	3271	11759	NEEL2016	dev test	7	2663	762 9894	1647 47488
									INEELZOIO	train	3	10000		172188
			To see a the and see	train	17	1639	5632		Finin	test	3		13027	97525
			Tweetbankv2	test	17	1201	4699	19095	Hege	test	3	1545	4552	
			D'N 461 IN 4204 6	train	17	4799	9113	73826	11080	train	3		19523	90060
			DiMSUM2016		17	1000	4010	16500		dev	3	933	5312	
			Foster	test	12	250	1068	2841	BROAD	test	3		117 72	
Chur	iking		lowlands	test	12	1318	<mark>48</mark> 05	<mark>1</mark> 9794		train	4	4000	20221	<mark>6</mark> 4439
data	split boundaries labels				label	sequences	s vocab	tokens		dev	4	1000	<mark>6</mark> 832	16178
	train [I, B, O] [ADJP,	, PP, INTJ, ADVP, PRT,	, NP, SBAR, VP, (ONJP	9	9 551	. 3158	10584	MultiModa	test	4	3257	17381	52822
	dev [I, B, O] [ADJP,	, PP, INTJ, ADVP, PRT,	, NP, SBAR, VP]		8	3 118	994	2317		train	4	2815	<mark>8</mark> 514	51521
Ritter	test [I, B, O] [ADJP,	, PP, INTJ, ADVP, PRT,	, NP, SBAR, VP]		8	3 119	988	2310	MSM2013	test	4	1450	5701	29089

Classification data

data	split	tokens	tweets	vocab
Airline	dev	20079	981	3273
	test	50777	2452	5630
	train	182040	8825	11697
Clarin	dev	80672	4934	15387
	test	205126	12334	31373
	train	732743	44399	84279
GOP	dev	16339	803	3610
	test	41226	2006	6541
	train	148358	7221	14342
Healthcare	dev	15797	724	3304
	test	16022	717	3471
	train	14923	690	3511
Obama	dev	3472	209	1118
	test	8816	522	2043
	train	31074	1877	4349
SemEval	dev	105108	4583	14468
	test	<u>5282</u> 34	2 <mark>3103 2</mark>	<mark>4</mark> 3812
	train	281468	12245	29673

Sentiment
classification

data	split	tokens	tweets	vocab
Founta	dev	102534	4663	22529
	test	256569	11657	44540
	train	922028	41961	118349
WaseemSRW	dev	25588	1464	5907
	test	64893	3659	10646
	train	234550	13172	23042

Abusive content identification

data	split	tokens	tweets	vocab
Riloff	dev	2126	145	1002
	test	5576	362	1986
	train	19652	1301	5090
Swamy	dev	1597	73	738
	test	3909	183	1259
	train	14026	655	<mark>2</mark> 921

Uncertainty indicator classification

TweetNERD - End to End Entity Linking Benchmark for Tweets

<u>TweetNERD - End to End</u> <u>Entity Linking Benchmark</u> <u>for Tweets | Zenodo</u>

Largest dataset for Entity Linking for Tweets: 340K tweets annotated with Mentions and Entities Linked to Wikidata.

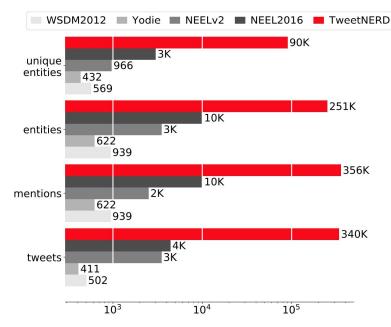


Figure 1: Comparison with existing Tweet entity linking datasets

TweetNERD - End to End Entity Linking Benchmark for Tweets

Table 3: Details of TweetNERD-Academic (same Tweet could occur in multiple datasets).

dataset	Tasks	Total Tweets	Found Tweets	Found %
Tgx [Dredze et al., 2016]	CDCR	15,313	9,790	63.9
Broad [Derczynski et al., 2016]	NER	8,633	6,913	80.1
Entity Profiling [Spina et al., 2012]	NER	9,235	6,352	68.8
NEEL 2016 [Rizzo et al., 2016]	NERD	9,289	2,336	25.1
NEEL v2 [Yang and Chang, 2015]	NERD	3,503	2,089	59.6
Fang and Chang [2014]	NERD	2,419	1,662	68.7
Twitter NEED [Locke, 2009]	NERD & IR	2,501	1,549	61.9
Ark POS [Gimpel et al., 2011]	POS	2,374	1,313	55.3
WikiD	NED	1,000	504	50.4
WSDM2012 [Meij et al., 2012]	Relevance	502	415	82.7
Yodie [Gorrell et al., 2015]	NERD	411	288	70.1

TweetNERD - End to End Entity Linking Benchmark for Tweets

Table 5: Evaluating TweetNERD-OOD and TweetNERD-Academic using existing systems.

Model	OOD	Academic
Spacy	0.377	0.454
StanzaNLP	0.421	0.503
SocialMediaIE	0.153	0.245
BERTweet WNUT17	0.278	0.46
TwitterNER	0.424	0.522
AllenNLP	0.454	0.552

Model	entity	match	strong all match		
	OOD	Academic	OOD	Academic	
GENRE	0.469	0.636	0.39	0.624	
REL	0.463	0.614	0.387	0.56	
GENRE REL Lookup	0.621	0.645	0.39 0.387 0.584	0.617	

(a) NER strong_mention_match F1 scores.

(b) Entity Linking given true spans F1 scores.

Model	entity	match	strong all match		
	OOD	Academic	OOD	Academic	
DBpedia	0.292	0.399	0.231	0.347	
NLAI	0.522	0.568	0.313	0.494	
TAGME	0.402	0.431	0.293	0.381	
REL	0.344	0.484	0.27	0.444	
GENRE ³	0.307	0.458	0.223	0.379	

(c) End to end entity linking F1 scores.

Challenges

Key challenges for improving IE performance

Challenge	Solution
Less data to learn	Multi-task learning, active learning, semi-supervised, or distantly supervised learning
Less languages to learn	Cross lingual alignment, Multilingual Knowledge bases
Less context to learn	Social and Graphical context of the tweet

Less data to learn: Multi-task learning to improving efficiency

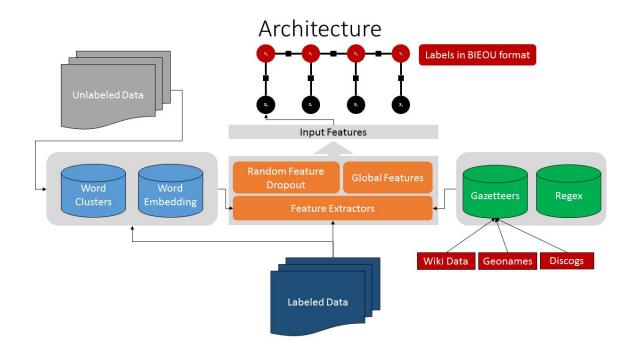
Multi-task learning

Active Learning

Semi-supervised learning

Rule based Twitter NER Mishra & Diesner (2016).

https://github.com/napsternxg/TwitterNER



Mishra, Shubhanshu, & Diesner, Jana (2016). Semi-supervised Named Entity Recognition in noisy-text. In Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT) (pp. 203–212). Osaka, Japan: The COLING 2016 Organizing Committee. Retrieved from <u>https://aclweb.org/anthology/papers/W/W16/W16-3927/</u>

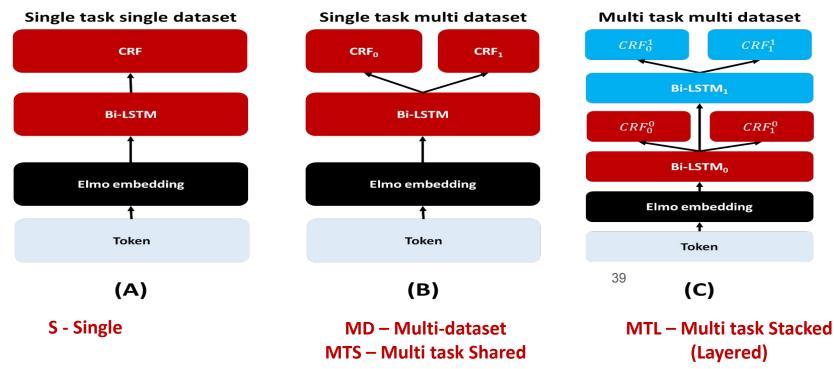
Evaluating Twitter NER (F1-score) Mishra & Diesner (2016).

Rank	TD	TDT_{E}
10-types	46.4	47.3
No-types	57.3	59.0
company	42.1	46.2
facility	37.5	34.8
geo-loc	70.1	71.0
movie	0.0	0.0
music artist	7.6	5.8
other	31.7	32.4
person	51.3	52.2
product	10.0	9.3
sportsteam	31.3	32.0
tvshow	5.7	5.7

System Name Stanford CoreNLP Stanford CoreNLP (with Twitter POS tagger) TwitterNER OSU NLP Stanford CoreNLP (with caseless models) Stanford CoreNLP (with truecasing) MITIE spaCy Polyglot NLTK	Precision 0.526838069 0.526838069 0.524096386 0.547077922 0.413084823 0.340364057 0.28426543 0.273080661 0.149006623	Recall 0.453416149 0.453416149 0.380822981 0.405279503 0.392468944 0.421583851 0.457298137 0.380822981 0.327251553 0.331909938	F1 Score 0.487377425 0.487377425 0.483370288 0.45709282 0.457092441 0.417291066 0.390260063 0.325535092 0.297722055 0.205677171
TwitterNER (with Hege training data) TwitterNER (with W-NUT 2017 training data) TwitterNER (with Finin training data) TwitterNER (with W-NUT 2017 and Hege training data) Source: https://blog.maxar.com/earth-intelligence. itter Code: https://github.com/humangeo/twitter	0.657213317 0.675307842 0.598086124 0.652276759 /2017/named	0.413819876 0.404503106 0.388198758 0.42818323	0.507860886 0.505948046 0.470809793 0.51699086

38

Multi-task-multi-dataset learning Mishra 2019, HT' 19



Shubhanshu Mishra. 2019. Multi-dataset-multi-task Neural Sequence Tagging for Information Extraction from Tweets. In Proceedings of the 30th ACM Conference on Hypertext and Social Media (HT '19). ACM, New York, NY, USA, 283-284. DOI: <u>https://doi.org/10.1145/3342220.3344929</u>

Evaluating MTL models Mishra 2019, HT' 19

Part of speech tagging (overall

၉ဌငုပ္ခracy)	Our best	SOTA	Diff %
DiMSUM2016	86.77	82.49	5%
Owoputi	91.76	88.89	3%
TwitlE	91.62	89.37	3%
Ritter	92.01	90	2%
Tweetbankv2	92.44	93.3	-1%
Foster	69.34	90.4	-23%
lowlands	68.1	89.37	-24%

Super sense tagging (micro

Dal a	Our best	SOTA	Diff %
Ritter	59.16	57.14	3.5%
Johannsen2014	42.38	42.42	-0.1%

Chunking (micro

0.			
Ďata	Our best	SOTA	Diff %
Ritter ⁰²⁰	88.92	None	NA

Named entity recognition (micro

f1 Data	Our best	SOTA	Diff %
BROAD	77.40	None	NA
YODIE	65.39	None	NA
Finin	56.42	32.43	74.0%
MSM2013	80.46	58.72	37.0%
Ritter	86.04	82.6	4.2%
MultiModal	73.39	70.69	3.8%
Hege	89.45	86.9	2.9%
WNUT2016	53.16	52.41	1.4%
WNUT2017	49.86	49.49	0.8%

Shubhanshu Mishra. 2019. Multi-dataset-multi-task Neural Sequence Tagging for Information Extraction from Tweets. In Proceedings of the 30th ACM Conference on Hypertext and Social Media (HT '19). ACM, New York, NY, USA, 283-284. DOI: <u>https://doi.org/10.1145/3342220.3344929</u>

Training Mishra 2019, HT' 19

- Sample mini-batches from a task/data
- Compute loss for the mini-batch
- Individual loss is the log loss for conditional random field
- Update the model except the Elmo module
- During an epoch go through all tasks and datasets
- Train for a max number of epochs
- Use early stopping to stop training

- Models trained on single datasets have prefix S
- Models trained on all datasets of same task have prefix MD
- Models trained on all datasets have prefix MTS for multitask models with shared module, and MTL for stacked modules
- Models with LR=1e-3 and no L2 regularization have suffix "*"
- Models trained without NEEL2016 have suffix "#"

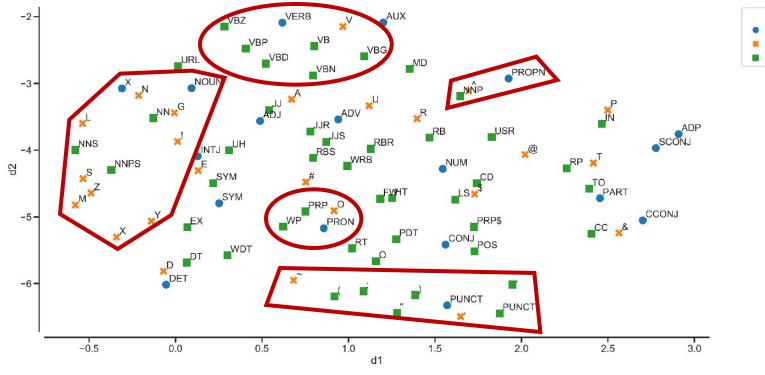
Label embeddings (POS)

- MDMT model learns similarity between labels without this knowledge being encoded in the model
- This leads to consistent relationship between similar labels across datasets

task ud pos

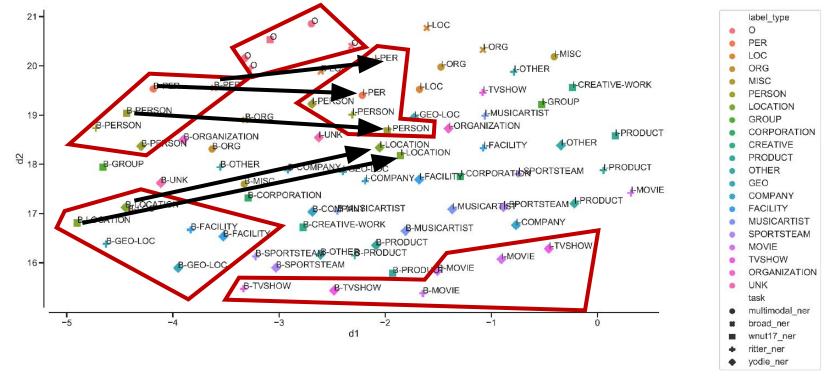
ark pos

ptb_pos



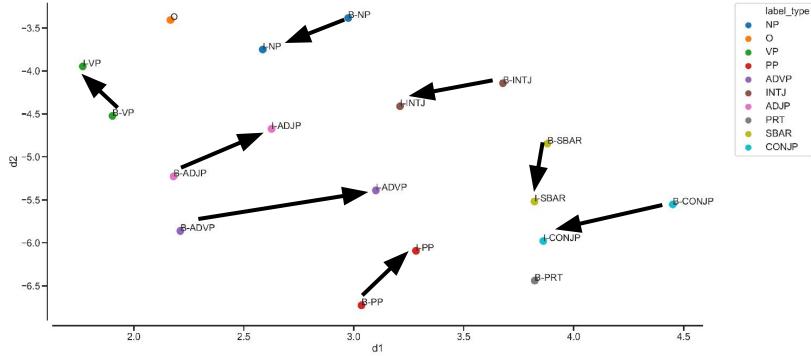
Label embeddings (NER)

- MDMT model learns similarity between labels without this knowledge being encoded in the model
- This leads to consistent relationship between similar labels across datasets

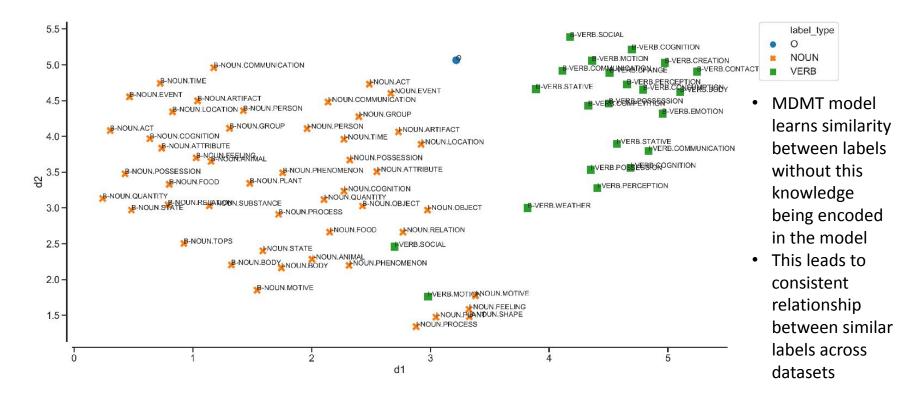


Label embeddings (chunking)

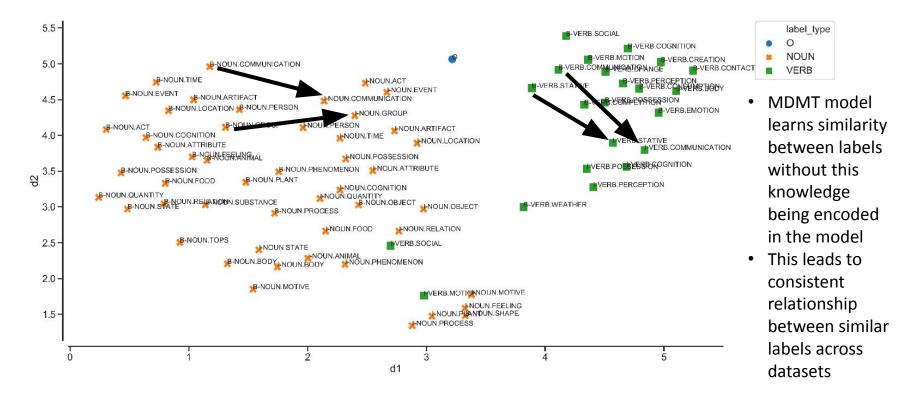
- MDMT model learns similarity between labels without this knowledge being encoded in the model
- This leads to consistent relationship between similar labels across datasets



Label embeddings (super-sense tagging)



Label embeddings (super-sense tagging)



Sentiment classification results

https://github.com/socialmediaie/SocialMedialE

file	A	irline	C	Clarin		GOP		Healthcare		Obama		SemEval	
model	r	v	r	v	r	v	r	v	r	v	r	v	
S bilstm	8	80.46	8	65.71	5	67.05	6	63.88	9	59.0	9	65.57	
MD bilstm	9	79.77	9	65.28	8	65.95	9	60.95	8	59.6	6	67.05	
MTS bilstm	11	63.21	10	47.37	10	56.78	10	60.25	11	38.9	11	40.43	
MTL bilstm	10	63.70	11	47.00	11	45.21	11	59.69	10	44.6	10	49.92	
S bilstm *	6	81.69	3	67.71	3	67.55	3	65.97	1	62.6	7	66.47	
MD bilstm *	5	81.85	7	66.23	7	66.50	4	64.85	3	61.7	3	68.98	
MTS bilstm *	7	81.65	6	66.55	4	67.45	2	66.81	7	60.3	1	69.52	
MTL bilstm *	2	82.22	4	67.60	2	68.10	1	67.09	6	⁴⁷ 61.3	2	69.10	
S cnn *	3	82.10	1	68.18	1	68.89	8	62.34	1	62.6	8	66.19	
MD cnn *	1	82.54	5	67.01	6	66.65	7	63.18	5	61.5	4	68.04	
MTS cnn *	4	82.06	2	67.72	9	64.81	5	64.57	3	61.7	5	67.63	

https://github.com/socialmediaie/SocialMedia

Abusive content

identification

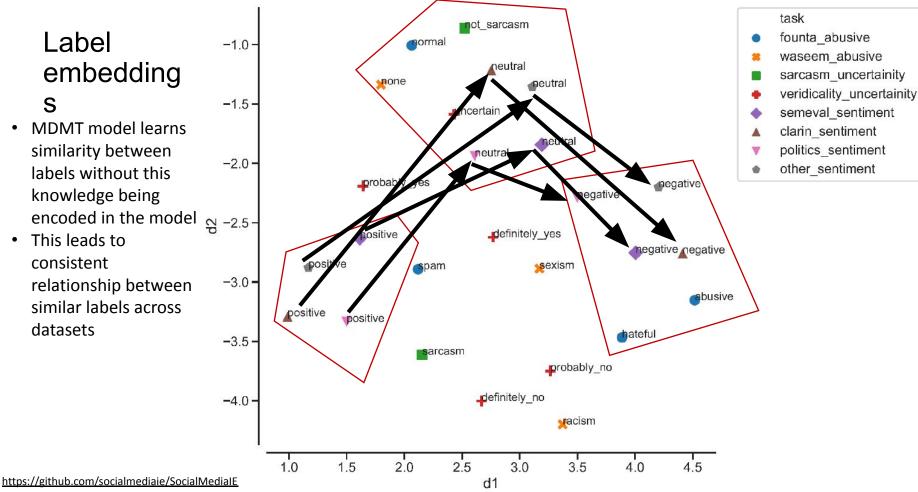
identification		*		
file	Fo	ounta	Wasee	emSRW
model	r	v	r	v
S bilstm	8	79.33	8	81.72
MD bilstm	9	79.03	9	81.31
MTS bilstm	11	61.48	11	68.57
MTL bilstm	10	69.26	10	70.13
S bilstm *	1	80.6	3	82.95
MD bilstm *	2	80.35	2	83.22
MTS bilstm *	6	80.11	7	81.99
MTL bilstm *	4	80.23	5	82.78
S cnn *	3	80.25	4	82.89
MD cnn *	5	80.18	1	84.42
MTS cnn *	7	79.92	6	82.67

<u>IE</u>

Uncertainty				
indicators file	F	Riloff	S١	wamy
model	r	v	r	v
S bilstm	6	81.22	5	38.80
MD bilstm	9	79.28	1	39.34
MTS bilstm	10	58.84	10	27.87
MTL bilstm	11	58.01	11	23.50
S bilstm *	3	83.43	1	39.34
MD bilstm *	7	80.94	1	39.34
MTS bilstm *	5	82.60	6	38.25
MTL bilstm ^{8*}	2	83.98	1	39.34
S cnn *	1	85.64	7	35.52
MD cnn *	4	83.15	8	32.79
MTS cnn *	8	80.11	9	31.15

Label embedding S

- MDMT model learns ٠ similarity between labels without this knowledge being encoded in the model $_{\frac{N}{2}}$ –2.5 –
- This leads to ٠ consistent relationship between similar labels across datasets



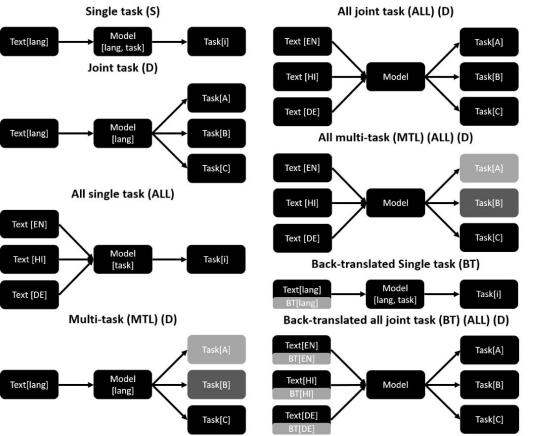


Fig. 2: An overview of various model architectures we used. Shaded task boxes represent that we first compute a marginal representation of labels only belonging to that task before computing the loss.

Mishra, S., Prasad, S. & Mishra, S. Exploring Multi-Task Multi-Lingual Learning of Transformer Models for Hate Speech and Offensive Speech Identification in Social Media. SN COMPUT. SCI. 2, 72 (2021). https://doi.org/10.1007/s42979-021-00455-5

Code: https://github.com/socialmediaie/MTML_HateSpeech

Less languages to learn: Multilingual learning to improve coverage

Stripe org acquires Nigeria loc 's Paystack org for \$200M+ to expand into the African continent loc https://tcrn.ch/3j2mnS3 by @ingridlunden

Stripe org rachète la startup nigériane loc Paystack org pour 200 millions de dollars afin de s'implanter sur le continent Africain loc https://tcrn.ch/3j2mnS3 @ingridlunden

स्ट्राईप org ने \$200M+ में नाइजीरिया loc के पेस्टैक org को अफ्रीकी महाद्वीप loc में विस्तारित करने के लिए अधिग्रहित किया https://tcrn.ch/3j2mnS3 @ingridlunden

NER trained on tweets using Multilingual Word Embeddings and BiLSTM

Language	English	German	Dutch	Spanish	French	Italian	Turkish	Hindi	Arabic
Testing Dataset	CoNLL-03	CoNLL-03	CoNLL-02	CoNLL-02	xLIME	xLIME	JRC	SEAS	CS-18
Lookup	36.6	22.8	36.8	29.7	15.6	23.3	22.9	20.4	16.7
Mono Training	40.2	35.5	39.4	27.4	27.7	29.3	24.8	11.8	22.8
Mul Training	38.3	36.6	43.2	29.1	26.4	28.9	28.0	9.8	14.0
Mono Training + WikiANN	47.2	41.2	55.4	37.6	30.3	28.4	27.8	14.0	21.9
Mul Training + WikiANN	43.2	39.6	52.8	44.0	32.6	25.4	28.6	8.3	11.3

Table 1: Entity-Level Micro-Average F1-scores for the PERSON, LOCATION and ORGANIZATION types

 Table Source:
 Ramy Eskander, Peter Martigny, Shubhanshu Mishra.
 Multilingual Named Entity Recognition in Tweets using Wikidata
 In WeCNLP 2020

Less languages to learn: Multilingual learning with lang families

Indo-European Balto-Slavic: bg cs lt lv pl ru sl sr uk	Sino-Tibetan zh	Dravidian
Germanic: da de en is nl no sv Armenian: hy	Lolo-Burmese: my	Southern: kn ml ta
Italic: ca es fr it pt ro Celtic: cy Hellenic: el	Tibeto-Kanauri: bo	South-Central: te
Indo-Iranian: bn ckb dv fa gu hi mr ne or pa ps sd si ur	Japonic ja	Isolates eu ko
Uralic Finno-Ugric: et fi hu Afro-Asiatic Sen	nitic: am ar he Turkic	Common Turkic: tu ug
Austro-Asiatic khm Vietic: vi Kartve	lian Karto-Zan: ka	Kra-Dai Tai: lo th
Austronesian Malayo-Polynesian: id tl	French-Creole Circum-C	Caribbean French: ht

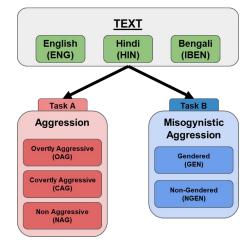
Figure 1: Our training languages, grouped into their families and sub-families

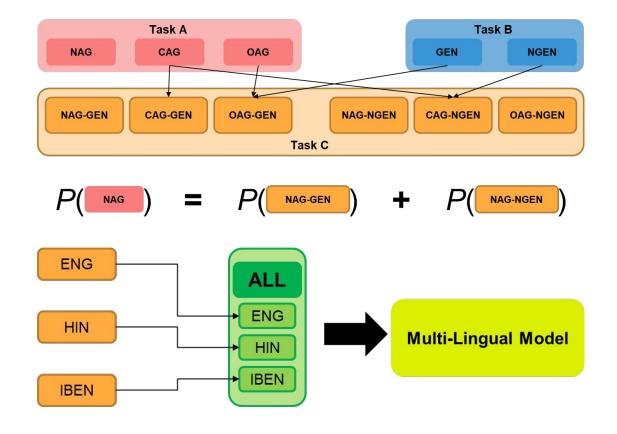
	Lang.	Dataset		Monolingual		Mulil	ingual (Family-Ba	ased)	Mul	tilingual (All-in-C	One)
			mBERT	mBERT+Tweets	LaBSE	mBERT	mBERT+Tweets	LaBSE	mBERT	mBERT+Tweets	LaBSE
_)	en	CONLL'03	41.8	40.7	43.1	40.1	38.9	42.9	37.9	36.0	33.3
	en	INH*	38.0	43.2	42.3	34.1	42.5	36.8	32.8	38.6	27.5
	de	CONLL'03	44.9	42.0	46.4	42.3	40.9	44.2	38.1	38.8	29.0
5	nl	CONLL'02	44.5	43.3	50.7	46.8	43.6	42.2	41.2	35.8	25.2
	es	CONLL'02	31.2	30.5	27.6	31.5	27.5	29.0	29.0	27.4	24.8
\equiv	es	INH*	40.3	41.8	39.7	35.9	39.0	33.1	32.4	37.2	24.8
	pt	INH*	33.0	41.2	38.1	29.1	36.2	26.3	27.6	33.9	18.5
\equiv		EuropeanaNP		35.4	34.4	33.6	31.3	29.7	28.1	26.8	22.0
	it	xLiMe*	14.4	17.7	16.3	14.4	18.9	16.6	16.3	19.3	16.3
	hi	SSEA	26.4	30.6	33.7	19.0	20.1	29.4	19.1	$\overline{17.1}$	9.1
	ur	SSEA	17.9	16.5	20.5	14.7	16.6	19.6	15.6	12.3	15.8
	bn	SSEA	25.1	21.2	45.3	19.1	18.9	36.8	16.5	18.9	19.3
	ar	Code-Switch'18*	26.8	28.0	27.6	23.4	25.5	28.9	21.9	23.0	23.0
	ar	INH*	16.0	20.4	16.4	14.1	20.7	15.7	11.4	16.2	10.8
	ja	INH	17.3	23.9	18.5	NA	NA	NA	17.2	20.3	15.1
	tr	JRC*	31.5	37.6	31.2	NA	NA	NA	26.9	32.1	28.0
	te	SSEA	13.0	10.8	17.6	NA	NA	NA	12.0	6.6	<u>18.0</u>
	Aver	age (Tweets)	27.2	<u>31.7</u>	28.7	25.2	30.5	26.2	23.3	27.6	20.5
	Ave	erage (IEG)	42.3	42.3	45.6	40.8	41.5	41.5	37.5	37.3	28.8
	Av	erage (IEI)	31.1	33.3	31.2	28.9	30.6	26.9	26.7	28.9	21.3
		erage (IEII)	23.1	22.8	33.2	17.6	18.5	28.6	17.1	16.1	14.7
	Av	erage (All)	29.3	30.9	32.3	28.4	30.0	30.8	24.9	25.9	21.2

Table 2: NER Results (entity-level micro-averaged F1) without the addition of the WikiAnn training sets. The best result per experimental pair ({test set, learning setting}) is in **bold**. The best result per test set is <u>underlined</u>. Tweet datasets are denoted by *. IEG = Indo-European, Germanic. IEI = Indo-European, Italic. IEII = Indo-European, Indo-Iranian.

Table Source: Ramy Eskander et. al. Towards Improved Distantly Supervised Multilingual Named-Entity Recognition for Tweets (To appear at MRL EMNLP 2022)

Multilingual transformer models for hate and abusive speech





https://github.com/socialmediaie/TRAC2020

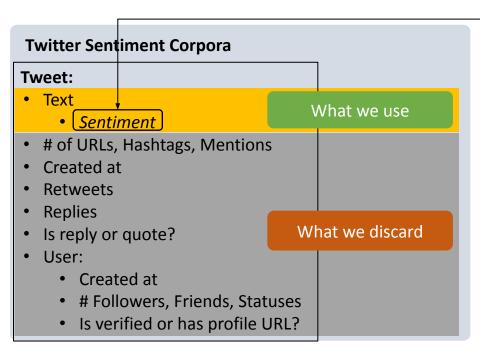
Multilingual Language Model Pretraining

	Hindi		Japanese		Arabic		
NER	F_1	$\Delta\%$	F ₁	$\Delta\%$	F ₁	$\Delta\%$	
mBERT	21.1	0.0	16.5	0.0	32.1	0.0	
+TPP (ONE)	24.3	15.2	29.9	81.4	39.4	22.8	
+TPP (ALL)	23.2	10.3	27.4	66.4	38.5	19.9	
Sentiment	F_1	$\Delta\%$	F ₁	$\Delta\%$	F ₁	$\Delta\%$	
mBERT	31.7	0.0	55.0	0.0	51.5	0.0	
+TPP (ONE)	32.7	3.0	66.4	20.6	58.3	13.2	
+TPP (ALL)	32.4	2.3	67.7	23.1	58.5	13.7	
UD POS	acc.	$\Delta\%$	acc.	$\Delta\%$	acc.	$\Delta\%$	
mBERT	67.4	0.0	52.7	0.0	64.0	0.0	
+TPP (ONE)	71.5	6.0	57.6	9.2	67.1	4.8	
+TPP (ALL)	66.4	-1.5	52.7	0.1	65.0	1.5	

- NER: 37% relative improvement in F1.
- Sentiment: 12% relative improvement in F1.
- **UD POS:** 6.7% relative improvement in accuracy.

Less context to learn: Include tweet context

Improving sentiment classification using user and tweet metadata

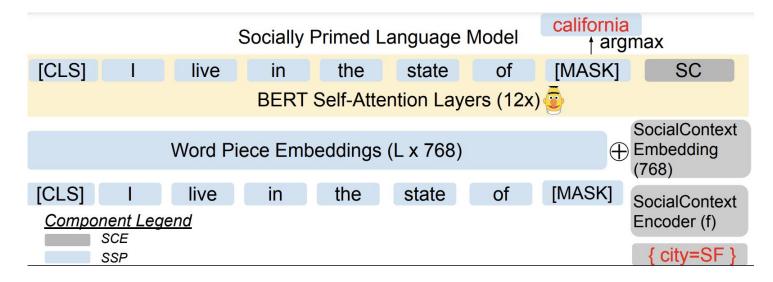


Sentiment is usually identified as **positive**, **negative**, and **neutral**.

- Are our corpora biased to certain meta-data attributes?
- Can those biases propagate into systems trained on these corpora?
- How correlated are these meta-data features with the annotated sentiment?
- Do these correlations hold outside of the annotated data for the same users?
- Can sentiment classifiers exploit this bias to do well on these datasets?

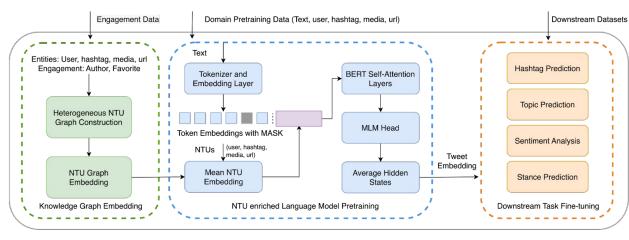
Mishra, S., & Diesner, J. (2018, July 3). Detecting the Correlation between Sentiment and User-level as well as Text-Level Meta-data from Benchmark Corpora. Proceedings of the 29th on Hypertext and Social Media. HT '18: 29th ACM Conference on Hypertext and Social Media. <u>https://doi.org/10.1145/3209542.3209562</u>

Less context to learn: Include tweet context: LMSOC



Vivek Kulkarni, Shubhanshu Mishra, and Aria Haghighi. 2021. LMSOC: An Approach for Socially Sensitive Pretraining. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2967–2975, Punta Cana, Dominican Republic. Association for Computational Linguistics.

Use non-textual units in social media posts



Model	NTUs	Perplexity	Topic	TweetEval	SemEval 1	SemEval 2	Hashtag	SMIE
		bits	MAP	mean F1	mean F1	mean F1	Recall@10	mean F1
BERT	-	4.425	0.327	0.577	0.527	0.515	0.689	0.548
NTULM	author	4.412	0.325	0.579	0.527	0.548	0.693	0.548
NTULM	Hashtag	4.391	0.339	0.586	0.534	0.545	0.711	0.539
NTULM a	uthor+Hashtag	4.344	0.343	0.590	0.534	0.545	0.720	0.549

Table 2: NTULM compared with BERT (MLM fine-tuned, section 4.2). We report the perplexity, mean average precision (MAP) in Topic, Recall@10 in Hashtag Prediction, and mean F1 score in the rest.

Jinning Li, Shubhanshu Mishra, Ahmed El-Kishky, Sneha Mehta, and Vivek Kulkarni. 2022. <u>NTULM: Enriching Social Media Text Representations with Non-Textual Units</u>. In Proceedings of the Eighth Workshop on Noisy User-generated Text (W-NUT 2022), pages 69–82, Gyeongju, Republic of Korea. Association for Computational Linguistics.

Author: user1 Tweet: Our paper was accepted at @WNUT with @user2 @user3 #nlproc #socialmedia Favorited by: user4, user5

Table 1: Example tweet with engagement data of author, mentions, Hashtags, and favorites

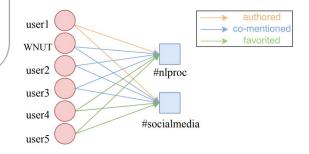


Figure 2: Graph construction with the example data in Table 1 for training NTULM user-Hashtag embeddings.

Bias of ML systems

Bias in Natural Language Processing

Task	Example of Representation Bias in the Context of Gender	D	S	R	U
Machine	Translating "He is a nurse. She is a doctor." to Hungarian and back to		\checkmark	\checkmark	
Translation	English results in "She is a nurse. He is a doctor." (Douglas, 2017)				
Caption Generation	An image captioning model incorrectly predicts the agent to be male		\checkmark	\checkmark	
	because there is a computer nearby (Burns et al., 2018).				
Speech	Automatic speech detection works better with male voices than female			\checkmark	\checkmark
Recognition	voices (Tatman, 2017).				
Sentiment Analysis	Sentiment Analysis Systems rank sentences containing female noun		\checkmark		
	phrases to be indicative of anger more often than sentences containing				
	male noun phrases (Park et al., 2018).				
Language Model	"He is doctor" has a higher conditional likelihood than "She is doctor"		\checkmark	\checkmark	\checkmark
	(Lu et al., 2018).				
Word Embedding	Analogies such as "man : woman :: computer programmer : homemaker"	\checkmark	\checkmark	\checkmark	\checkmark
n de la composition d	are automatically generated by models trained on biased word		10000		
	embeddings (Bolukbasi et al., 2016).				

Source: Sun, Tony, Andrew Gaut, Shirlyn Tang, Yuxin Huang, Mai ElSherief, Jieyu Zhao, Diba Mirza, Elizabeth Belding, Kai-Wei Chang, and William Yang Wang. "Mitigating gender bias in natural language processing: Literature review." DOI <u>10.18653/v1/P19-1159</u> (2019).

NER Bias

	CNET	ELMo	GloVe	corenlp	spacy_lg	spacy_sm		
	WINOGENDER							
Black Female	0.7039	0.8942	0.8931	0.7940	0.8908	0.3043		
Black Male	0.8410	0.8986	0.9015	0.8862	0.7831	0.3517		
Hispanic Female	0.8454	0.8308	0.8738	0.8626	0.8378	0.3726		
Hispanic Male	0.8801	0.8603	0.7942	0.8629	0.8151	0.4628		
Muslim Female	0.8537	0.8130	0.9074	0.8747	0.8287	0.4285		
Muslim Male	0.7791	0.9265	0.9351	0.9477	0.8285	0.4976		
White Female	0.9627	0.9116	0.9679	0.9723	0.9577	0.5574		
White Male	0.9644	0.9068	0.9700	0.9688	0.9260	0.7732		
OOV Name	0.4658	0.9318	0.7573	0.7724	0.2994	0.0824		
		IN-	SITU					
Black Female	0.8289	0.8802	0.9193	0.8134	0.6732	0.2104		
Black Male	0.8964	0.8800	0.9206	0.8828	0.5922	0.2651		
Hispanic Female	0.8934	0.8510	0.9091	0.8754	0.6736	0.3038		
Hispanic Male	0.9151	0.8729	0.8404	0.8699	0.6692	0.3649		
Muslim Female	0.9015	0.8348	0.9230	0.8817	0.5686	0.3409		
Muslim Male	0.8574	0.9043	0.9407	0.9421	0.6890	0.4122		
White Female	0.9619	0.8900	0.9555	0.9714	0.7862	0.4503		
White Male	0.9541	0.8930	0.9504	0.9589	0.7234	0.6388		
OOV Name	0.7405	0.8962	0.8720	0.8374	0.1003	0.0381		

- White male names have the highest accuracy across models while black female names have the lowest
- For ELMo model muslim female names have the lowest accuracy, while white female names have the highest accuracy

Mishra, S., He, S., & Belli, L. (2020). Assessing Demographic Bias in Named Entity Recognition. *ArXiv, abs/2008.03415*.

Thank You

More details:

- <u>https://socialmediaie.github.io/tutorials/</u>
- <u>https://socialmediaie.github.io/</u>
- Contact: <u>https://twitter.com/TheShubhanshu</u>