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ABSTRACT

Social networks can be constructed from expliciiorimation

about who is talking to whom, and/ or inferred frtime content of
communication. How do the resulting network stroesu
compare? We provided an answer to this questiotohgtructing
explicit social networks from chat logs and compgrithem to
implicit social networks built from text data geatd by these
agents. We apply different conceptualizations ofilsirity to the

text data. This work helps to understand if expkcicial networks
(what people typically work with) can serve as axyrfor the true
structure of communication networks.

Our findings suggest that the more simplistic apploon the
lexical level outperforms the more complex, topéséd approach.
This means that reconstructing social networks dase lexical

features is the best option tested, while detectitgrnative and
additional latent structures of people sharing #agne topical
knowledge requires looking for thematic clustersvofd use.
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1. INTRODUCTION

Communication networks are meant to represent m&two
participants and the information flow between théfgpically,
communication networks are constructed by observimg
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inquiring information about who is talking to whorim a more
general sense, these networks represent socialorstwihere
people interact with each other through a spetyfie of behavior,
i.e. natural language. Building such networks bpadimg social
agents as nodes and the information flow betweem ths edges is
straightforward, acknowledges the exchange of méiion, and
can be highly efficient, e.g. when network data aueomatically
extracted from chat logs, email conversations ciagonedia data.
However, this approach also reduces the content of
communication to the fact, frequency or likelihoaicthe flow of
information between nodes. This can be problensitice prior
research has shown that without considering thestanbe of
communication data, our ability to model and unterd the
effects of language use in networks becomes Ilimit€dis
includes the transformative role that language cee play in
networks as well as the interplay and co-evolutiof
communication and networks [1-5].

To address this limitation, a variety of methodsHluailding social
network data from information explicitly or implity contained in
unstructured, natural language text data has beeelaped [for
an overview see 6]. These methods are explainedoire details
in the background section. We herein refer to nstwdata
collected by observing or asking network particigaambout their
ties asexplicit social networksand networks inferred from the
content of text data @mplicit social networksThe body of prior
work on these networks leaves three critical qoaesti
unanswered:

1. How do communication networks extracted from
information contained in text data (implicit social
networks) compare to networks constructed by
collecting data from the networks participants clise
e.g. by questionnaires or observations (explicitiao
networks)?

2. Given a variety of available methods for extracting
implicit social networks from text data, which mett{s)
best resemble(s) explicit social networks?

3. Are there any best practices for combining textdas
methods (with or without explicit network data
construction  methods) for gaining a more
comprehensive view of a network?



In this paper, we address questions one and twe.otlitcome of
this work patches some holes at the intersectiometivork

analysis and text mining, and lays the foundatifmmsanswering
questions three. Why does this work matter? Fivgthout

knowing how closely implicit social networks resdmkexplicit

social networks, we cannot assume that explicitabowtworks

are a good proxy for the true structure of commatinn

networks. Second, if explicit and implicit sociaétwork data
align, then one type can serve as a substitutéhtorother type,
e.g. in cases where data collection for a certgie tis hard to
infeasible. In order to address the given reseaguobstions, we
have implemented and modified a variety of techeguor

extracting social networks from text data (methamistion),

applied them to a corpus of empirical chat log daten which we

also construct explicit social network structuratédsection), and
compared the results against each other (resuiti®sp

2. BACKGROUND

One general approach for constructing implicit aboetwork data
from text data is to conduct entity detection paimth relation

extraction [7]. This means to identify all instasa® references to
social agents in the text data, and linking thersedaon criteria
such as distance (the most common approach) [2]/osh and

deep syntax [1], and statistical features [7-9]isTapproach is
reasonable when social agents as well as indicdtmrsthe

relations between them are referred to in thedast. Overall, the
underlying goal here is to correctly extract sogalicture from
text data [10]. This is particularly useful whenaether sources for
network data might be available, e.g. in the caddsistoric and

covert networks.

Alternatively, authors of pieces of text data candonsidered as
agent nodes. This could be the authors of documgmasts,
tweets, etc.. Information on social agents can hisentailed in
log files that record discussions between peopld.[In either
case, these nodes then get linked based on ancer@unt of
similarity between the agent’s language use, semtirstc. In the
simplest case, this is realized by extracting salterms or (one
step up) themes that emerge from the text dataesepting these
(sequences of) tokens as vectors, and computingdhgruence
between these vectors by choosing from a varietgiwilarity
metrics [12, 13]. Overall, this approach is usefiien network
participants have provided some content, whichtban serve to
construct social network data or supplement explancial
network data.

In this paper, we focus on the second approach. AMFiyst,
because it represents the more general case, latidrrextraction
might still be conducted in addition to the simifgtbased node
linkage. Second, this approach eliminates uncemtgiror error
rates for the entity detection part such that we ftcus on the
core of our research questions without diluting thsults with
additional intervening variables. Accuracy of entidetection
currently ranges, depending on the type of entigtween the
upper 80ies to 90% percent; with this interveniagtdr being
removed from our experimental design for this study

3. DATA

The data for this project were captured from a asepbased
simulation game designed specifically to identifye tdefining
aspects of multiple teams working interdependerttyvard
hierarchically arranged goals. The goal of thistirteam system
simulation is to guide a convoy of humanitarian d#mtough
enemy territory. To accomplish this goal, indivitueust collect

intelligence, neutralize threats, and move the ogrne reach as
many destinations in their region as possible. &hare four
component teams — Atlantica, Baltica, Caspia, aadifiea — in
each simulation session. Each component team tedsi$ five
individuals: a leader, a reconnaissance officerafidld specialist
who work on counter-insurgency, and a reconnaissafficer and
a field specialist who work on ordinance disposables were
appointed randomly. The leaders were charged withimg the
convoy. The leaders had to agree on where and whedvance
the convoy. The four non-leader team members wesponsible
for identifying and neutralizing threats. Each tehad a counter-
insurgency and an ordinance disposal unit; eachpdsad of a
reconnaissance officer and a field specialist. T@@nnaissance
officer is responsible for identifying potentialrélats and must
communicate this information to the field speciaigho will then
act on engaging and eliminating the threat.

All individuals were given their own laptop and Heat.

Communication was carried out primarily via Skypeth through
chat and voice. For each simulation session, atfafiscript of
time-stamped messages was logged. For this paper,ane
considering the chat logs of each simulation sessipaddition to
virtual communication channels, the players wegaiged into six
physical workstations, each of which had two torfoulividuals.

Three workstations allowed face to face commurocatin the

other three, the players were forced to use ondyr theadsets.
Additionally, the rooms were shuffled so that playevere not
necessarily collocated with their own team. Themassignments
and communication rules were constant across ssices.

In total, thirty-three experimental sessions weiaried out.
Overall, there were 660 unique individuals in theeariment.
However, the twenty game-specific roles were hetshstant
across each run; in other words, “leader.caspias played by
thirty-three people, but sat in the same seat énséime room on
the same laptop, and was responsible for the saimdrant of the
game map.

4. METHOD

From the abovementioned chat log data, we havetrembsd one
explicit social network for each of the 33 simutatigames. In
order to compare these networks to implicit sonitworks that
are built based on shared knowledge entailed ircdident of chat
logs, we apply different techniques as outlinedolaelWe have
implemented these techniques as described in #usos and
made them  available as  routines in

(http://context.lis.illinois.edy/ a publicly available toolkit.

Usually, communication logs consist of a messagésEements
of each message can have attributes such as semt=age body,
timestamp, priority, etc. We formalize the set obgible types of
communication representable by chatlogs as persq@eison

networks and broadcasting networks. In person-tegue
networks, each message has sender and receivilutatir In

broadcasting networks, each message only has arsetidnodes
in the network are receivers in this case. The rassudata
structure for communication data or chat logs tha are

processing are csv files that contain at a minimum:

« A column that specifies senders
¢ A column that specifies receivers
e« Communication content

We generate social networks from the textual ewvderof
communication activity as well as from text contbgtdetecting

ConText



concepts and themes that are shared between p&opléhe first
approach, we basically parse the senders (andveesgifrom the
log file. For the second approach, we use tokerdand topic
based text mining methods, which we describe next.

4.1 Token Similarity Based Networks

A communication network consists of agent

fithess of each topic per document; i.e. user. Fhare on, we
provide four ways of generating social networksrfrthis data,
namely:

4.2.1 Cosine Similarity Based Networks
These networks are generated by first creatingpi forobability

sets vector for each document, then calculating the rsimilarity

A = {a,,-,a,}. For simplicity, we consider each message as afor each pair of actors, and linking each pair eibes for who the
pair (b, s) whereb is message body ards message sender. The similarity value is equal to or higher than a udefined threshold

messages set Bl = { (by,s;),(bs,s5),-*, (by, sm)} where
b; € A ands;are arbitrary strings. We define the similaritytwb
agents using their messages similariti*in

_ E(bilskl(bj,sl) e MSIM(Sk,s)

d@,j)

|Mai| + |MaJ|

Where|M, | is the number of messagelhthata; sent.

For messages similarity, we use different concdizations of the

string similarity of any pair of messages. In gahethere are two
groups of string similarity methodgdit-distance like functions
and token-based distance functio$2]. In edit-distance like

functions, the distancd(s;, sj) is calculated as the costs of the

operations needed to convest to s;. Typical edit operations

include character insertion, deletion and substitut Each
operation has predefined costs. Levenstein, Jatalaro-Winkler
are three most common edit-distance like methods.

In token-based distance functiorsand s; are considered as
multisets of tokens (we define words as space aeghitokens).
Jaccard similarity, cosine similarity and JenseasBion are the
most common token-based functions.

We herein use the following similarity methods: (daccard
similarity, and (2) SoftTFIDF Jaro-Winkler. The daWinkler

distance metric is designed and best suited fart strings such as
the names of people, organizations and locatiohe Jcore is
normalized such that 0 equates to no similarity Ariddicates an
exact match. We provide the “soft” version of TFID# Jaro-

Winkler, in which similar tokens are consideredvasl as exact
match tokens in Jaro-Winkler. It has been empigicgthown that

the best-performing method for string distance io®tn terms of
accuracy and speed is SoftTFIDF Jaro-Winkler [12].

4.2 Topic Based Networks

In order to identify agents who are connected basedimilar
topics we conduct topic modelling [14]. Topic mddgl is an
unsupervised summarization technique that represir main
themes occurring in a body of text data in termsopfcs, where
topics are unlabeled ordered sets of text-baseentokhat most
strongly represent that topic. We have adapted Ha8ed topic
modelling as provided in Mallet [15], which we haweegrated
into ConText. The input data for our version ofitomodeling are
the messages sent by each user. Givesers in a chat log file, we

constructn documents, one per user. Each document contdins al

the messages from that one user.

In order to also capture users connected througiesdhat might
be less prevalent overall but highly descriptive fodividual

users, we recommend generating a large numbepifstce.g. 50.
This strategy was also used for this project. Fthenoutcome of
topic modeling we collect the probability scoreattindicate the

value. We provide a default threshold value of l%he resulting
networks, link weights represent the similarityuslwhich ranges
from the threshold value to 1. The networks areinaated.

N = Number of Topics
pi = Probability of topic i for sender k
s, =<p&,ps,...,pk > Vector of topic probabilities for sender s,

5i .55

]

Edge Weightw;; = || ||
Sil| =

4.2.2 K - Top Similar Topic Cosine Similarity Based

Network

This is a variant of the method describe abovd, ttie difference
being that the topic probability vector for eachcdiment only
includes the K common topics shared between any phi
documents. Conceptually, this represents a conmeegéowards
the largest common denominator or consensus amamngug of
people; penalizing marginalized opinions — whiche tprior
approach does capture.

N = Number of Topics

K = Number of top topics to compare

pi = Probability of topici for sender k

Sig =<, pb,...,pk > Vectoroftop K topic probabilities for sender s;

Sig =< pjl,pjz, . pi( > Vector oftop K topic probabilities for sender s;

Sik -5
Edge Weightwy;x = LK-AK

=

‘|Si,K| |Sj,1<|‘

4.2.3 Max Topic Based Network

In these networks, people are only connected ifr theghest
scoring topics match. The shared top topic is gt@®a property
of the edge. This enables content-based edgenabeli

4.2.4 Min Topic Based Network

This is the counterpart to the method provide abdmethese

networks, people are only connected if their lovgestring topics
match. This network is useful for identifying theosh distant

people in terms of shared knowledge. The respedtpic is

stored as an edge property. Note that min topieesess a pseudo
control case or sanity check here — we hypothetiae these
networks resemble the explicit social network leastd worse
than any other type.



5. Results The point to be made with these images — and taiemlizes

To illustrate the types of network produced and pared herein, ~ 2cross the simulation games — is that none of rtiidit social

Figure 1 shows an example for each type for onearty picked networks closely resembles. the explicit one. Buw Har off are

simulation game. Colors represent groups (basethaniularity), ~ they? To answer this question, we produced eadhesie seven
node sizes are scaled by degree centrality, ané taiibl sizes ~ Networks for all 33 simulation games. We then comgathe

reflect betweeness centrality. The visualizatiomseaproduced in  IMPlicit networks to the explicit one for each siation game
Gephi https:/gephi.org/ Graph a) represents the explicit social NUmerically by computing hamming distances and geee a
network. Graphs b-g show the implicit social neteoftwo token ~ Matrix of respective scores for comparing any twetworks

based networks (Soft-Tfldf, Jaccard) and the fapict based ~ (Tables 1.2). Hamming distances basically expreesagreement
networks (#Topics: 15, Threshold: 0.2, #CommonTsipi). in edge identity between any given pair of graphs.
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Figure 1. Explicit (a) and implicit (b-g) social networksfor one simulation game.

To drill deeper into illustrating the topic baseetworks, Figure 2
shows the connection of individual authors throdigbir top K
(=5) topics selected from a pool of 20 topics. Awth (agent

[]1eader.caspia
. chostr pacifica

. figerr caspia

nodes) are shown on the left hand side, topicshenright hand
side. This is the underlying information used foengrating
networks based on topic similarity for authors.
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Figure 2. Top 5topiclinkagesfor authorsfor one simulation game. L eft side: name of authors, right side: topics.

The percentage values in Table 1 quantify the iiffee between
the implicit and explicit social networks. Tableaggregates these
values into descriptive statistics. To ease thdingpof the Tables,
values are color coded on a green to red scalesepting low to
high disagreement. Our results suggest that theonk$ based on
MaxTopic (a summarization/ topic based approach)Jatcard (a
lexical/ token level approach) are most similaretglicit social
networks. Differences between the different simakatgames
exist, but the observed patterns are fairly robusbss the games.

As expected, the min topic networks are worse rsiroations of
the given social structure than most other typeiee from text

data content — except for TopKCosineSimilarity reat®. One
explanation  for this discrepancy might be
TopKCosineSimilarity by its algorithmic nature prams a higher
number of edges; including a large amount of fals&tives when
it comes to the conducted comparison. However etlagklitional
edges might suggest meaningful further connectibetveen
people who share a certain amount of knowledgeceSihese
latent agreements are not entailed in or visildenfthe explicitly
given structure, text mining based network consimaccan help
to reveal them. Further follow-ups with the pagats in the
experiments would be needed to verify this asswonpti

that



Additionally, such deviations are a chance to camgnt or but never actually talked to each other. These Ipeopuld be
enhance our understanding of a given networks sitgestions  introduced to each other, strategically distributettoss work

for people who have some knowledge or informatimeammon, units, or serve as back-ups for their respectinetfonal roles.
Networ k Cosine MaxTopic MinTopic TopKCosine Jaccard Soft-TFIDF
ChatData#4 8.50% 11.80% 17.30% 38.20% 3.90% 2.90%
ChatData#5 9.20% 6.70% 21.30% 40.80% 3.40% 4.70%
ChatData#6 12.40% 7.30% 24.60% 41.60% 4.50% 8.90%
ChatData#7 7.60% 12.70% 36.00% 40.00% 10.00% 8.90%
ChatData#8 6.30% 7.60% 23.20% 43.20% 1.60% 6.10%
ChatData#11 13.20% 10.60% 21.00% 42.10% 2.60% 9.20%
ChatData#13 12.60% 7.60% 15.00% 41.80% 5.40% 2.40%
ChatData#14 7.40% 3.80% 20.20% 42.60% 33.30% 9.20%
ChatData#15 10.30% 12.60% 29.50% 42.10% 4.90% 2.40%
ChatData#16 12.40% 6.20% 27.80% 42.90% 5.80% 6.80%
ChatData#17 10.50% 6.60% 26.00% 42.40% 10.00% 7.60%
ChatData#18 9.50% 21.20% 27.10% 42.90% 5.80% 5.50%
ChatData#19 11.60% 13.80% 20.50% 44.50% 3.90% 10.80%
ChatData#21 10.00% 8.30% 18.10% 37.60% 6.10% 8.90%
ChatData#23 9.40% 9.00% 22.10% 42.60% 6.80% 10.50%
ChatData#24 6.00% 7.50% 34.30% 38.80% 2.60% 10.70%
ChatData#25 9.20% 8.80% 36.30% 41.10% 5.30% 8.40%
ChatData#26 8.40% 7.60% 17.50% 43.20% 15.00% 1.60%
ChatData#27 11.40% 9.10% 35.60% 42.40% 5.60% 3.80%
ChatData#28 12.60% 12.90% 16.30% 41.30% 7.40% 10.00%
ChatData#29 10.00% 15.90% 26.60% 43.40% 4.70% 4.70%
ChatData#30 10.30% 10.30% 22.60% 40.80% 6.10% 5.00%
ChatData#32 8.20% 10.00% 36.30% 41.10% 3.90% 3.70%
ChatData#33 6.60% 4.50% 20.80% 41.60% 1.80% 2.10%
ChatData#34 8.90% 4.50% 25.10% 38.20% 3.20% 2.60%
ChatData#35 8.90% 8.30% 32.60% 38.20% 4.70% 8.90%
ChatData#37 5.30% 6.40% 28.80% 36.10% 7.10% 15.00%
ChatData#38 4.00% 6.80% 29.50% 41.90% 3.80% 3.10%
ChatData#39 7.10% 9.00% 35.40% 39.20% 8.40% 3.20%
ChatData#40 10.50% 10.00% 21.60% 45.00% 16.70% 4.50%
ChatData#41 10.50% 10.30% 22.10% 39.50% 8.50% 10.50%
ChatData#42 6.70% 9.10% 21.90% 41.50% 1.60% 1.50%
ChatData#43 9.20% 9.90% 48.40% 37.40% 4.20% 2.60%

Table 1. Comparison of percentage difference between underlying networ ks and each similarity based networks.



METRIC Cosine MaxT opic MinTopic TopKCosine Jaccard SoftTfldf

M ean 34.42 14.61 89.88 155.27 14.82 23.76
Std. Deviat. 8.69 6.80 26.62 11.27 8.77 13.26
Variance 75.46 46.30 708.41 126.93 76.88 175.70
M ax 50.00 33.00 148.00 176.00 32.00 57.00
Min 17.00 7.00 46.00 117.00 0.00 5.00
Median 35.00 13.00 85.00 158.00 15.00 21.00
Avrg. Deviat. 63.85 39.18 599.42 107.40 65.05 148.67

Table 2. Aggregated statistics over hamming distances.

6. DISCUSSION AND CONCLUSION

We provide new empirical insights into the relasbip between
social networks constructed from a) explicit data metwork
participants and the fact of communication exchabgéveen
them and b) based on the similarity of text datadpced by these
agents. Overall, the more simplistic approach anléxical level
(token based networks) outperforms more complegictbased
methods. This means that explicit social networke hest
approximated by sticking to similarities on the diarse level.
More advanced representation of language use hisncase the
summarization of an agent’'s utterances into emgrdfiremes —
lead to network structures that deviate from exgficgiven
structures more strongly. This means that recoctstig social
network data based on lexical features is the bpson tested,
while detecting alternative latent structure of gleovho share the
same topical knowledge requires looking for thematusters of
word use.

Our findings are limited by the empirical data usadd the
techniques considered. While we did analyze 33 eufit

communication sessions with different people plgythe same
roles, all data come from one particular domainmelg planning
courses of action between collaborating individusle plan to
address this limitation by also working with chaig$ and
communication data from other topic domains. Wecgrdte the
outcome of this process to calibrate our findingsspnted herein.
We also aim to experiment with additional methoalsifferring

social structure from text data, including the tiela extraction
approach explained in the background section. Ve alan to
enhance our findings by conducting deeper errorlyaisa to

understand the false positives and false negathatsthe implicit

networks contain.

Finally, we will study how the implicit networks egare to each
other, and try to identify how explicit social neks can best be
enhanced with implicit ones and vice versa to gairmore
comprehensive understanding of socio-semantic mkswo
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